
Eur. Phys. J. D 43, 225–228 (2007)
DOI: 10.1140/epjd/e2007-00098-4 THE EUROPEAN

PHYSICAL JOURNAL D

Magnetism in artificial lattices
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Abstract. We compare magnetism in two artificial lattice structures, a quantum dot array formed in a two-
dimensional electron gas and an optical lattice loaded with repulsive, contact-interacting fermionic atoms.
When the tunneling between the lattice sites is strong, both lattices are non-magnetic. With reduced
tunneling in the tight-binding limit, the shell-filling of the single-site quantum wells combined with Hund’s
rule determines the magnetism. This leads to a systematic magnetic phase diagram with non-magnetic,
ferromagnetic and antiferromagnetic phases.

PACS. 75.75.+a Magnetic properties of nanostructures – 03.75.Ss Degenerate Fermi gases

1 Introduction

Artificially confined quantum systems have proved to be
a basis for future nanotechnological applications. One has
been able to confine a small number of conduction elec-
trons of a two-dimensional electron gas formed in a layered
semiconductor heterostructure by using etching and gat-
ing techniques. Experiments and electronic structure cal-
culations have shown that the external confinement gives
rise to a quantum-mechanical shell structure [1]. Occupa-
tion of shells leads to characteristic features in the addition
spectrum and total spin. Single quantum dots can be cou-
pled electrostatically to form artificial molecules and lat-
tices. In contrast to real solids where the atomic bonding
defines the band structure, the inter-dot coupling is tun-
able in quantum dot lattices, which allows for constructing
artificial lattices with designed band structures.

More recently, degenerate atomic quantum gases con-
fined into optical and magnetic traps have drawn growing
interest after the celebrated discovery of Bose-Einstein
condensation [2,3]. Ultra-cold atom gases have opened
an exciting laboratory to explore many-particle systems
that are not accessible in conventional atomic or solid
state physics. As another advance, ultra-cold atoms can
be trapped into an optical lattice created by standing laser
waves [4–6]. They provide a unique setup to study artificial
crystal structures with tunable physical parameters. The
physical properties of optically trapped quantum gases
and electrons in solids are closely linked. Optical lattices,
however, are free of defects and allow for studies of more
coherent structures contrary to their solid-state counter-
parts. An optical lattice is a periodic array of microscopic
quantum wells, each confining a small number of atoms.
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The confined atoms can have several hyperfine states from
which a smaller set can be selected. The tunneling and
the localization of atoms in the lattice are controlled by
the lattice depth which can be tuned by changing the
laser intensity. This allows for a smooth transition from
a tightly bound lattice to a system of nearly free atoms.
The main interaction mechanism in a weakly interacting,
dilute atom gas is the s-wave scattering. The strength of
this short-range contact interaction can be tuned in the
vicinity of a Feshbach resonance [7].

In a bosonic optical lattice, the Mott insulator-
superfluid quantum phase transition is realized [8,9].
Fermionic atoms in a three-dimensional lattice were exper-
imentally studied by Köhl et al. [10]. Experiments show
that a gradual filling of the lattice transforms the system
from a normal state into a band insulator. In addition,
by using the Feshbach resonance, a dynamically induced
transition between lowest Bloch bands is achieved. The
transition is revealed by probing the Fermi surface through
absorption imaging [10].

2 Magnetism in artificial lattices

In condensed matter physics, magnetic correlations are at-
tributed to the alignment of electron spins. The Hubbard
model provides a simple Hamiltonian that is widely
used to describe magnetism in solids and nanostruc-
tures [11,12]. It has also been argued that the Hubbard
model is well-suited for describing atom dynamics in an
optical lattice [8]. In experiments, the hopping parameter
can be adjusted with the potential depth and the local
interactions are described by the on-site interaction pa-
rameter.
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Fig. 1. (Color online) A two-dimensional sinusoidal optical
lattice potential. Below is a schematic picture of the square
lattice with the unit cell containing two lattice sites allowing
for antiferromagnetic (AF) and ferromagnetic (F) orderings of
single-site spins.

The Hubbard model assumes the lowest band approx-
imation, allowing at most two atoms per lattice site. In
our study, we apply a mean-field approach to explore two-
dimensional square lattices formed by quantum dots, or
interfering laser beams. The lattice and unit cell is shown
schematically in Figure 1. There are two lattice sites per
unit cell for the magnetism to be observed. Hund’s rule
and the single-site shell structure play a central role in de-
termining the magnetic properties of quantum dot lattices
confining long-range interacting electrons [13] and opti-
cal lattices with short-range contact-interacting fermionic
atoms.

2.1 Quantum dot lattice

Magnetism in a two-dimensional square lattice formed by
electrostatically coupled quantum dots was earlier investi-
gated in reference [14]. In contrast to the sinusoidal optical
lattice displayed above, which experimentally can be cre-
ated by crossed lasers, the confinement for the electrons
was provided by a commensurate positive background
charge distribution in order to ensure over all charge neu-
trality. The background distribution consists of a sum of
Gaussians centered at the desired lattice sites. The bot-
tom of the confinement potential at each site is nearly
parabolic giving rise to closed shell configurations at elec-
tron numbers N = 2, 6 and 12 per lattice site. These
“magic” numbers are non-magnetic with spin S = 0. The
orbital degeneracy at mid shell leads to maximization of
spin at N = 4 (S = 1) and 9 (S = 3/2) in accordance
with Hund’s first rule.

Spin-density functional formalism in the local den-
sity approximation was used to calculate the ground
state for interacting electrons moving in the (quasi-)two-
dimensional plane. Due to the periodic boundary condi-
tions, the Kohn-Sham orbitals are of Bloch form. The

Fig. 2. (Color online) Upper panel: magnetism in a square lat-
tice of quantum dots with N ≤ 11 electrons per dot, as a func-
tion of the lattice constant a (in atomic units). Lower panel:
magnetism in sinusoidal optical lattice with fermionic atoms,
as a function of lattice depth V0. The gapless (metallic) phase
is blue and the color-coded magnetic phases are antiferromag-
netic (AF, red), ferromagnetic (F, yellow) and non-magnetic
(NM, green).

states and the band energies are labeled by the band in-
dex n, wave vector k and spin σ = (↑, ↓).

A magnetic phase diagram of the square quantum dot
lattice as a function of the number of electrons per single
dot N and the lattice constant a is shown in the upper part
of Figure 2. The non-magnetic, gapless (metallic) phase is
indicated with blue. Spin alignment is indicated by colors
and abbreviations. The magnetism sets on at increasingly
larger lattice constants as the spatial extent of the highest
occupied orbital increases with N . At larger values of a,
the individual dots are more isolated and the electrons
become tightly bound to the lattice sites. In this limit,
the spin is determined by the occupancy of the energy
levels at the single quantum dots. We note that at closed
shells N = 2, 6 and 12 (corresponding to shell closures
of 1s, 1p and 2s1d-shells, respectively) the lattice is non-
magnetic. At mid-shell, for N = 1, 4 and 9, the band is
exactly half-filled. In this situation, the lattice lowers its
energy by opening a gap at the Fermi-surface. The gap
results from the spin-Peierls transition associated with the
antiferromagnetic spin ordering. At open shells the Fermi-
level resides in a band, and therefore, the lattices tend to
be ferromagnetic metals.
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2.2 Optical lattice

We note that fabricating a lattice consisting of identical
solid-state quantum dots is not easy. The shell structures
of the individual dots should be rather similar for the mag-
netic effects to appear. Almost perfect square lattices can
be created with interfering lasers that provide confinement
for fermionic atoms. We found that the shell effects can
lead to magnetic phenomena also in optical lattices loaded
with weakly interacting, repulsive fermions. We consider
fermionic atoms with two hyperfine species confined into a
two-dimensional optical lattice. In the contact-interacting
two-component fermion gas there is no interaction be-
tween same species atom due to the Pauli exclusion princi-
ple. Therefore, the trapped atoms occupying a degenerate
shell can lower their interaction energy by maximizing the
number of atoms of the same species or, in other words,
by aligning their spins. This mechanism leads to Hund’s
rules and magnetism, in close similarity to Coulomb in-
teracting electrons in quantum dot lattices. Here, Hund’s
rule has a more dramatic effect as it removes completely
the interaction between the same-species atoms.

An optical lattice is created by counter-propagating
laser beams. The resulting potential, a sinusoidal standing
wave Vopt(r) = V0(cos2(kx)+ cos2(ky)), is depicted in the
upper panel of Figure 1. The amplitude V0 is proportional
to the laser intensity and wave number k = 2π/λ is set by
the laser wave length [4–6]. A natural unit for the energy
is the recoil energy ER = �

2k2/(2m). The standing waves
form a square lattice from which we choose a unit cell
containing two lattice sites. The inter-site tunneling can be
tuned by varying the lattice depth V0. With increasing V0

the atoms become more localized at the lattice sites, the
band dispersion decreases and the shells in the individual
traps are separated by increasingly large gaps.

The ground state of the dilute fermion atom gas is
solved from Kohn-Sham-like equations where the exact
exchange potential is local. The periodic Bloch functions
unkσ(r) satisfy equations

− �
2

2m
(∇ + ik)2unkσ(r)

+ (Vopt(r) + gnσ′
(r))unkσ(r) = εnkσunkσ(r),

σ �= σ′ (1)

where m is the atom mass, nσ is the density of atom
species σ and g is the interaction strength which we have
fixed to g = 0.3ER/k2. The periodic functions are ex-
panded in plane wave basis and for the Bloch wave vec-
tor k a grid of 5×5 up to 9×9 is used. The self-consistent
iterations are started with antiferromagnetic and ferro-
magnetic initial potentials.

The lower part of Figure 2 shows the magnetism in an
optical lattice with N fermionic atoms per lattice site, as
a function of the depth of the lattice V0. The magnetic
phases set on in deeper lattices when the atom wave func-
tions are localized at the lattice sites and the spin per site
is determined by the occupancy of the single-site energy
levels. The bottom of a single-site potential can be ap-
proximated by a harmonic potential with �ω =

√
4V0ER.
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Fig. 3. Integrated spin S/� in a single optical lattice site as a
function of particle number N . The depth of lattice is fixed at
V0 = 8ER for atom number N ≤ 6 (solid line) and V0 = 12ER

for N ≥ 6 (dotted line). The spin and, thus, magnetism follows
the shell occupancy of the single quantum wells at lattice sites.

At higher energies, the potential has a square symmetry
due to a notch connecting the different lattice sites. It
breaks the three-fold orbital degeneracy of the 2s1d oscil-
lator shell. Therefore, the closed shells correspond to atom
numbers N = 2, 6, 10 and 12 per lattice site. These cases
are non-magnetic with spin S = 0. For N = 1, 4, 8 and 11
the valence shells of the single traps are half-filled. Due
to Hund’s first rule, the orbital degeneracy is resolved by
maximizing the spin per lattice site. For these atom num-
bers, the Fermi-level resides exactly in the middle of the
band and the energy is lowered by opening a gap at the
Fermi-level. This is due to the spin-Peierls effect of anti-
ferromagnetic spin ordering. For other atom numbers the
shell is only partially filled and the Fermi-level resides in
a band resulting in a ferromagnetic lattice.

Figure 3 shows spin per lattice site as a function of
atom number N . The spin per lattice site is obtained by
integrating the spin density over a single lattice site,

S =
�

2

∫
site

[
n↑(r) − n↓(r)

]
dr. (2)

In order to be in the tightly-bound limit, where the mag-
netism sets on, the depth of the lattice is fixed to V0 = 8ER

for atom numbers N = 1–6 (corresponding to 1s and 1p
shells) and V0 = 12ER for N = 7–12 in the 2s1s shell. The
spin maximization at half-filled shell for atom numbers
N = 1, 4, 8 and 11 can be seen. The spin and magnetism
vanish at closed shell configurations N = 2, 6, 10 and 12.
We notice that the integrated spin per site develops
linearly with particle number.

The detection of magnetic phases in ultracold Fermi-
gases has been discussed in in reference [15] where spin-
selective Bragg spectroscopy is proposed to detect long-
range antiferromagnetic order. The use of quantum noise
interferometry has also been proposed [16].
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3 Summary

We found that artificial lattices exhibit intriguing mag-
netic effects in close similarity to solid state magnetism.
The occupancy of the single lattice site quantum wells
and Hund’s rule determine the magnetic phases in the
semiconductor quantum dot lattices and optical lattice
with fermionic atoms. The fermionic optical lattices could,
therefore, serve to test the current theories of mag-
netism in a defect-free environment. Hund’s rule applies to
contact-interacting atoms in a dramatic manner, removing
completely the interaction between like atoms. This leads
to antiferromagnetism when the single-site valence shell is
half-occupied. At closed shells spins are compensated and
no magnetism is observed. For other atom numbers, both
the lattices tend to favor ferromagnetism.

This study was financially supported by the swedish re-
search council, the swedish foundation for strategic reseach,
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